数学与统计学院教师简介---秦永松

发布时间:2017-04-18 浏览次数:6448

秦永松     

教授、博士、博士生和硕士生导师


简介:19646月出生,19977月毕业于中国科学技术大学统计与金融系,获理学博士学位,广西师范大学二级教授、博士生指导老师(20189月,硕士导师:20011月)、广西“新世纪十百千人才工程”第二层次人选。历任广西数学会常务理事、中国现场统计研究会(全国一级学会)理事(2009-2016)、中国现场统计研究会资源与环境统计分会常务理事(2008-至今)。先后应邀到澳大利亚La Trobe University统计系、加拿大York University数学与统计系、加拿大University of Waterloo统计与精算系、加拿大Dalhousie University大学数学系、香港大学统计与精算系、加拿大 Carleton University 数学与统计学院、美国 University of Rochester 生物统计和计算生物系、新加坡国立大学统计和应用概率系等多所研究机构从事10多次合作

研究。

长期从事非参数统计、经验似然、基因统计和缺失数据的统计分析,分别在独立样本、相依样本和缺失数据的经验似然、空间计量经济模型的经验似然以及混合模型的统计推断等领域取得了一系列科研成果,在《Biometrika》、《Scand. J. Statist.》、《Journal of Multivariate Analysis》、《Statistica Sinica》、《中国科学》、《科学通报》等学术杂志发表学术论文100余篇,SCI 收录论文 70余 篇。

20071月起至今主持国家自然科学科学基金项目5项(含面上项目3项),主持广西自然科学科学基金项目等4项。成果“混合模型的检验及相依样本下的经验似然研究”于20087月获国家统计局第九届全国统计科研优秀成果奖(二等,主持);“缺失数据情形的经验似然推断”于20107月获国家统计局第九届全国统计科研优秀成果奖(二等,主持);“混合模型及总体差异比较的似然推断”获2008年度广西壮族自治区科学技术进步奖(三等,主持);“缺失数据情形的经验似然推断及混合模型的齐一性检验”获2016年度广西自然科学奖(三等,主持)。


研究方向

非参数统计、经验似然方法、计量经济模型、混合模型


讲授课程

1.本科生课程:《概率论与数理统计》、《线性代数》、《高等数学》

2.研究生课程:《高等数理统计》、《应用时间序列》、《多元统计分析》、《现代非参数统计》、《概率论的极限理论》


科研项目

部分科研项目:

1.国家自然科学基金面上项目(11671102),空间计量经济模型的经验似然推断,2017.01—2020.12,主持,已结题

2.国家自然科学基金面上项目(11271088),相依样本下的经验似然推断,2013.01-2016.12,主持,已结题

3.国家自然科学基金面上项目(10971038),缺失数据下部分线性单指标模型的经验似然推断,2009.01-2012.12,主持,已结题


科研成果

部分论文:

 [73] Jianrong Rong, Yan Liu, and Yongsong Qin(通讯)Empirical likelihood for spatial dynamic panel data models with spatial lags and spatial errors, Communications in  Statistics - Theory and Methods, 52(18)(2023), 6658–6683.

 [72] Shichao Zhang, Jiaye Li, Wenzhen Zhang, Yongsong Qin, Hyper-class representation of data, Neurocomputing, 503 (2022), 200–218.

 [71] Yinghua Li, Yongsong Qin(通讯), Empirical likelihood for spatial dynamic panel data models, Journal of the Korean Statistical Society, 51(2022),500–525.

 [70] Yinghua Li, Yuan Li, and Yongsong Qin(通讯), Empirical likelihood for panel data models with spatial errors, Communications in  Statistics - Theory and Methods, 51(2022), 2838–2857.

 [69] Yinghua Li, Yongsong Qin(通讯), Empirical likelihood for moving average models, Communications in  Statistics - Theory and Methods, 50(2021), 3661–3676.

 [68] Yongsong Qin, Empirical likelihood and GMM for spatial models, Communications in Statistics - Theory and Methods, 50(2021), 4367–4385.

 [67] Yinghua Li, Yongsong Qin(通讯), Yuan Li, Empirical likelihood for nonparametric regression models with spatial autoregressive errors, Journal of the Korean Statistical Society, 50 (2021) , 447–478.

 [66] Yongsong Qin, Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances, Sankhya: The Indian Journal of Statistics, 83(2021), 1-25.

 [65] Song Cai, Yongsong Qin, J. N. K. Rao and Malgorzata Winszewska, Empirical likelihood confidence intervals under imputation for missing survey data from stratified simple random sampling, The Canadian Journal of Statistics , 47(2)(2019), 281–301.

 [64] Qingzhu LeiYongsong Qin(通讯), Empirical Bayes estimation in continuous one parameter exponential families under associated samples, Communications in Statistics - Theory and Methods, 46(2017),3621-3630.

 [63] Qingzhu LeiYongsong Qin(通讯), Empirical likelihood for partially linear models under negatively associated errors, J. Syst. Sci. Complex (2016) 29: 1145–1159.

 [62]  Yinghua LI , Yongsong QIN(通讯),  Qingzhu LEI , Lifeng LI, Quantile estimation with auxiliary information under positively associated samples, Acta Mathematica Scientia,26(2)(2016), Pages 453–468

 [61] Ying-hua LI, Yong-song QIN(通讯), Qing-zhu LEI, Empirical likelihood for quantiles under associated samples, Acta Mathematicae Applicatae Sinica, English Series, 31(1)(2015): 71-80.

 [60] Qingzhu LeiYongsong Qin(通讯), Confidence intervals for probability density functions under strong mixing samples, Journal of Nonparametric Statistics, 27( 2)(2015): 181–193.

 [59] Yongyong Qin, Tao Qiu, Qingzhu Lei, Empirical likelihood for response differences in two linear regression models with missing data, Acta Mathemacae Applicatae Sinica, English Series, Vol. 31, No. 4 (2015) 963–976. SCI

 [58] Yongsong QinQingzhu Lei, Empirical Likelihood for linear models under linear process errors, Communications in Statistics - Theory and Methods, 44(2015): 3218–3233.

 [57] Qingzhu LeiYongsong Qin, Empirical Bayes test problem in continuous one-parameter exponential families under dependent samples, Sankhya : The Indian Journal of Statistics, 27(2015): 364-379

 [56] Yongsong QinYinghua Li, Qingzhu Lei, Joint empirical likelihood confidence regions for a finite number of quantiles under negatively associated samples, J Syst Sci Complex, 28(2015) : 1389–1398

 [55] Qingzhu Lei and Yongsong Qin Joint empirical likelihood confidence regions for a finite number of quantiles under strong mixing samples, Appl. Math. J. Chinese Univ. 30(1)(2015)44-54.

 [54] Yongsong Qin, Tao Qiu & Qingzhu Lei, Confidence intervals for nonparametric regression functions with missing data, Communications in Statistics—Theory and Methods, 43(2014): 4123–4142.

 [53] Yongsong Qin and Yinghua Li,Estimation for partially linear models with missing responses: the fixed design case, Acta Mathemacae Applicatae Sinica, English Series, Vol. 30, No. 2 (2014) 447–472.

 [52] Li, Y. and Qin, Y., Empirical likelihood confidence intervals for distribution functions under negatively associated samples, Communications in Statistics-Theory and Methods, 42(2013), 4357-4364.

 [51] Qin, Y., Lei, Q. and Luo, L., Empirical likelihood for nonparametric models under linear process errors, Aust. N. Z. J. Stat., 55(2)( 2013), 109-128.

 [50] Chengyong Tang and Yongsong Qin, An efficient empirical likelihood approach for estimating equations with missing data, Biometrika (2012), 99(4), 1001–1007.

 [49] Yinghua Li, Yongsong Qin and Qingzhu Lei, Confidence intervals for probability density functions under associated samples, Journal of Statistical Planning and Inference. 1422012),1516–1524.

 [48] Qingzhu Lei and Yongsong Qin, Confidence intervals for nonparametric regression functions with missing data: multiple design case, Journal of Systems Science and Complexity, 24(2011), 1204-1217.

 [47] Yongsong Qin, Yinghua Li, Weizhen Yang and Qingzhu Lei, Confidence intervals for nonparametric regression functions under negatively associated errors, Journal of Nonparametric Statistics, 232001, 645–659.

 [46] Yongsong Qin and Qingzhu Lei, Quantile estimation in the presence of auxiliary information under negatively associated samples, Communications in Statistics—Theory and Methods, 40, September 2011, 4289–4307.

 [45] Haiyan Su, Yongsong Qin, and Hua Liang, Empirical likelihood-based confidence  interval of ROC curves, Statistics in Biopharmaceutical Research, 1(4)(2009), 407-414.

 [44] Yongsong Qin and Jianjun Li , Empirical likelihood for partially linear models with missing responses at  random, Journal of Nonparametric Statistics, 23(2)(2011), 497–511.

 [43] Yongsong Qin and Yinghua Li , Empirical likelihood for partially Linear models with missing responses: the fixed design case, Communications in Statistics-Theory and Methods, 40(2011), 1849–1865.

 [42] Q. Lei, Y. Qin, Empirical likelihood fornon-parametric regression models with missing responses: multiple design case,Acta Mathematicae Applicatae Sinica, English Series, Vol. 27, No. 1(2011), 1–12.

 [41] Yongsong Qin and Yinghua Li, Empirical likelihood for linear models under negatively associated errors, Journal of Multivariate Analysis, 102 (2011), 153–163.

 [40] Qingzhu Lei, Yongsong Qin, Empirical likelihood for quantiles under negatively associated samples, Journal of Statistical Planning and Inference, 141 (2011), 1325–1332.

 [39] Yongsong Qin , J.N.K. Rao and Changbao Wu, Empirical likelihood confidence intervals for the Gini measure of income inequality, Economic Modelling , 27 (2010) , 1429–1435.

 [38] Yongsong Qin, Shichao Zhang and Chengqi Zhang, Combining kNN imputation and bootstrap calibrated empirical likelihood for incomplete data analysis, International Journal of Data Warehousing and Mining (IJDWM), 6(4)(2010), 61-73 .

 [37] Yongsong Qin, Yinghua Li, Qingzhu LeiEmpirical likelihood for probability density functions under negatively associated samples, J. of Statistical Planning and  Inference, 141(2011), 373-381.

 [36] Yongsong Qin, Qingzhu Lei, On empirical likelihood for linear models with missing responses, Journal of Statistical Planning and Inference, 140(2010), 3399-3408.

 [35] Yongsong Qin, Bruce Smith and Qingzhu Lei, Test for homogeneity in normal mixtures with unknown means and variances, Journal of Statistical Planning and Inference, 139 (2009),  4165 -4178.

 [34] Qihua Wang, Yongsong Qin, Empirical likelihood confidence bands for distribution Functions with missing responses, Journal of Statistical Planning and Inference, 140 (2010)  2778–2789.

 [33] Hua LiangYongsong QinXinyu Zhang and  David  Ruppert, Empirical likelihood-based inferences for generalized partially linear models, Scandinavian Journal of Statistics, 362009, 433–443.

 [32] Qingzhu Lei and  Yongsong Qin, A modified likelihood ratio test for homogeneity in bivariate  normal mixtures of two samples, Jrl Syst Sci & Complexity, 22(2009),460-468.

 [31] Yongsong Qin and Junchao Zhang,  Semi-empirical likelihood confidence intervals for the differences of quantiles with missing data, Acta Mathematica Sinica (English Series), 25(2009), 845-854.

 [30] Yongsong Qin, Ling Li and  Qingzhu Lei, Empirical likelihood for linear regression models with missing responses, Statistics & Probability Letters, 79(11)(2009), 1391-1396.

 [29] Yongsong Qin, Shichao Zhang, Xiaofeng Zhu, Jilian Zhang and Chengqi Zhang, Estimating confidence intervals for structural differences between contrast groups with missing data, Expert Systems with Applications, 36 (2009), 6431–6438.

 [28] Hua Liang and Yongsong Qin, Empirical likelihood-based inferences for partially linear models with missing covariates, Australian & New Zealand Journal of Statistics, 50(4)(2008), 347-359.

 [27] Yong-song Qin and Yong-jiang Qian,  Empirical likelihood confidence intervals for the differences of quantiles with missing data, Acta Mathematicae Applicatae Sinica (English Series), 25(2009), 105-116.

 [26] Yongsong Qin, Shichao Zhang, Xiaofeng Zhu, Jilian Zhang and Chengqi Zhang, POP algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases, Expert Systems with Applications, 36 (2009), 2794-2804.

 [25] Jiahua Chen, Yongsong Qin , Test for homogeneity in Hardy–Weinberg normal mixture model, Journal of Statistical Planning and Inference,1382008, 3774-3788.

 [24] Yongsong Qin, J.N.K. Rao and Qunshu Ren Confidence intervals for marginal parameters under imputation for item nonresponse, Journal of Statistical Planning and Inference, 1382008,2283

 2302.

 [23] Yongsong Qin, J.N.K. Rao and Qunshu RenConfidence intervals for marginal parameters under fractional linear regression imputation for missing data, Journal of Multivariate Analysis,992008, 1232

 1259.

 [22] Yongsong Qin and Shichao Zhang , Empirical likelihood confidence intervals for differences between two datasets with missing data, Pattern Recognition Letters,Volume 29, Issue 6,15 April 2008, Pages 803-812.

 [21] Shichao Zhang, Yongsong Qin, Xiaofeng Zhu, Jilian Zhang, Chengqi Zhang: Optimized Parameters for Missing Data Imputation. PRICAI 2006: 1010-1016.

 [20] Yong Song Qin and Bruce Smith , The likelihood ratio test for homogeneity in bivariate normal mixtures, Journal of Multivariate Analysis, 2006, 97, 474-491. 2006.

 [19] Yong Song Qin and Bruce Smith, Likelihood ratio test for homogeneity in normal mixtures in the presence of a structural paramete,Statistica Sinica, 2004, 14, 1165-1177.

 [18] 秦永松、雷庆祝, 含结构参数的二元正态混合模型齐一性的修正似然比检验, 中国科学(A ), 372007, 1463-1473.

 [17] Qin, Y. S. and  Wu, Y.,  An estimator of a conditional quantile in the presence of auxiliary information, J. Statistical Planning and Inference, 2001, 99, 59-70.  

 [16] Yong Song Qin, Semi-parametric likelihood confidence intervals for various differences of two populations, Statistics and Probability Letters, 1997, 33(2), 135-143.

 [15] Yongsong Qin, Shichao Zhang, Xiaofeng Zhu, Jiliang Zhang, Chengqi Zhang, Semi-parametric optimization for missing data imputation, Applied Intelligence,  2007, 27, 79-88.

 [14] Chen, S. X and Qin, Y. S., Empirical Likelihood confidence interval for a local linear smoother, Biometrika, 2000, 87, 946-953.

 [13] Chen, S. X and Qin, Y. S., Confidence interval based on a local linear smoother, Scandinavian Journal of Statistics, 2002, 29, 89-99.

 [12] 苏淳、秦永松, NA随机变量的两个极限定理, 科学通报, 421997, 243-246.

 [11] Lixing Zhu, Yongsong Qin, Wangli Xu, Empirical likelihood ratio tests for regression models, Science in China (Ser. A), 2007, 50(6), 827-840.

 [10] Song-xi ChenYong-song Qin, Coverage Accuracy of Confidence Intervals in Nonparametric Regression, Acta Mathematicae Applicatae Sinica, 192003, 387-396.

 [9] 秦永松、赵林城, 两总体分位数差异的经验似然比置信区间, 数学年刊A(中文版), 181997, 687-694.

 [8] 秦永松, 条件分位数和条件密度的经验似然置信区间, 数学年刊A(中文版), 201999, 333-342.

 [7] 秦永松、苏淳, 条件分位数的经验似然置信区间, 数学年刊A(中文版), 212000,231-240.

 [6] 秦永松、赵林城, 有偏模型中一类统计泛函的经验似然估计及其渐近性质, 应用数学学报, 211998, 428-436.

 [5] 秦永松、赵林城, 两样本分位数差异的半经验似然比检验, 应用数学学报, 21(1998),103-112.

 [4] 秦永松、苏淳, 含附加信息时条件分位数的估计及其渐近性质, 应用数学学报, 23(2000), 55-62.

 [3] 秦永松、雷庆祝, 最近邻回归估计的正态逼近速度, 系统科学与数学, 17(1997), 29-35.

 [2] 秦永松, 双边截断情形下QH统计量的渐近分布, 系统科学与数学, 19(1999),364-370.

 [1] 秦永松、赵林城,  Empirical likelihood ratio confidence intervals for various differences of two populations, 系统科学与数学(英文版), 13(2000), 23-30.


获奖情况

荣誉称号:

广西新世纪十百千人才工程第二层次人选(2009年),广西高校优秀人才资助计划人选(2009年)

获奖情况:

2016:缺失数据情形的经验似然推断及混合模型的齐一性检验,广西自然科学奖,3等奖,排名(1/2

2013:相依和缺失数据情形的经验似然推断,国家统计局第十一届全国统计科研优秀成果奖, 2等奖,排名(2/3

2010:缺失数据情形的经验似然推断,国家统计局第十届全国统计科研优秀成果奖,2等奖,排名(1/3

2008年:混合模型的检验及相依样本下的经验似然研究,国家统计局第九届全国统计科研优秀成果奖,2等奖,排名(1/3

2008年:混合模型及总体差异比较的似然推断,广西壮族自治区科学技术进步奖,3等奖,排名(1/6


社会兼职

中国现场统计研究会资源与环境分会常务理事、广西数学会常务理事