数学与统计学院教师简介——钱凌志

发布时间:2021-03-15 浏览次数:5375

钱凌志

博士、教授、博士生导师广西高等学校

中青年骨干教师,广西师范大学B类漓江学者。

Email:qianlz@mailbox.gxnu.edu.cn




简介:

  钱凌志,男,教授,博士。数学学科博士后、广西高等学校千名中青年骨干教师培育对象、广西师范大学B类漓江学者。现为国际SCI期刊《Engineering Analysis with Boundary Elements》、《Computational and Applied Mathematics》等期刊的审稿人。

主要从事微分方程数值解的理论与计算、计算流体力学、两相不可压缩流体耦合问题、虚拟元算法等研究工作。

  主持国家自然科学基金项目、广西自然科学基金面上项目、江苏省大规模复杂系统数值模拟重点实验室项目、自治区优秀博士后基金人才项目等课题8项,先后参与国家自然科学基金等课题5项。并在J. Sci. Comput.Commun. Nonlinear Sci. Numer.Simul.Int. J. Heat Mass Transf.Appl. Math. Model.Comput. Math. Appl.Numer.Algorithms等权威期刊发表SCI论文30余篇,研究成果获自治区科技进步二等奖。


部分研究论文:

  1. Ying Ye, Xinlong Feng, Lingzhi Qian(通讯作者),A second-order Strang splitting scheme for the generalizedAllen–Cahn type phase-field crystal model with FCC orderingstructure, Commun. Nonlinear Sci. Numer.Simul., 137 (2024) 108143.

  2. Danchen Zhu, Xinlong Feng,  Lingzhi Qian(通讯作者), Error analysis of Crank-Nicolson-Leapfrog scheme for the two-phaseCahn-Hilliard-Navier-Stokes incompressible flows, Comput. Math. Appl., 172 (2024) 78~93.

  3. Yuting Zhang, Xinlong Feng, Lingzhi Qian(通讯作者),A second-order L2-difference scheme for the nonlineartime–space fractional Schrödinger equation, Commun. Nonlinear Sci. Numer.Simul., 131 (2024) 107839.

  4. Lingzhi Qian, Chunya Wu, Huiping Cai, Xinlong Feng, Yuanyang Qiao, Afully-decoupled artificial compressible Crank-Nicolson-Leapfrog time stepping schemefor the phase field model of two-phase incompressible flows, J. Sci. Comput., 94 (2023).

  5. Chunya Wu, Xinlong Feng, Yinnian He,Lingzhi Qian(通讯作者), A secondorder Strang splitting scheme with exponential integrating factor for the Allen–Cahnequation with logarithmic Flory–Huggins potential, Commun. Nonlinear Sci. Numer.Simul., 117 (2023), 106983.

  6. JingWang, Yuting Zhang, Danchen Zhu,Lingzhi Qian(通讯作者),An interior penalty discontinuous Galerkin reduced ordermodel for the variable coefficient
    advection–diffusion-reactionequation
    ,Numer. Algorithms,https://doi.org/10.1007/s11075-023-01702-x.

  7. JingWang,Ying Ye, Danchen Zhu,Lingzhi Qian(通讯作者),Hybridizable discontinuous Galerkin reduced order model forthe variable coefficient advection equation ,Comput. Appl. Math.,42(2023).

  8. Yuanyang Qiao*, Lingzhi Qian(通讯作者), Xinlong Feng, Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces, Eng. Comput.,2021, https://doi.org/10.1007/s00366-021-01357-z.

  9. Lingzhi Qian,Jinru Chen, Xinlong Feng, The stabilized lower-order and equal-order finite element methods for the hydrostatic Stokes problems,  Int. J.Commun. Heat and Mass Tran.,111 (2020) 104391.

  10. Jingwei Li, Jianping Zhao, Lingzhi Qian,Xinlong Feng, Two-level meshless local Petrov Galerkin method for multi-dimensional nonlinear convection-diffusion equation based on radial basis function, Numer. Heat Tran., Part B: Fundamentals, 74(4) (2019) 685-698.

  11. Lingzhi Qian, Jinru Chen, Xinlong Feng, Local projection stabilized and characteristic decoupled scheme for the fluid-fluid interaction problems, Numer. Meth.  Par. Diff. Equa.,  33(3) (2017) 704~723.

  12. Lingzhi Qian, Huiping Cai, Xinlong Feng, Dongwei Gui, The characteristic subgrid artificial viscosity stabilized finite element method for the nonstationary Navier-Stokes equations , Int. J.Commun. Heat and Mass Tran., 65 (2015) 37~46.

  13. Shuying Zhai, Lingzhi Qian, Dongwei Gui, Xinlong Feng, A block-centered characteristic finite difference method for convection-dominated diffusion equation, Int. J.Commun. Heat and Mass Tran., 61 (2015) 1~7.

  14. Lingzhi Qian, Huiping Cai, Rui Guo, Xinlong Feng, The characteristicvariational multiscale method for convection-dominatedconvection-diffusion-reactionproblems, Int. J. Heat and Mass Tran., 72 (2014) 461~469.

  15. Haiyan Su, Lingzhi Qian, Dongwei Gui, Xinlong Feng, Second order fully discrete and divergence free conserving scheme for time-dependent conduction-convection equations, Int. J.Commun. Heat and Mass Tran., 59 (2014) 120~129.

  16. Lingzhi Qian, Xinlong Feng, Yinnian He,The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems, Appl. Math. Model., 36 (2012) 561~572.