胥世成教授学术报告:Rigidity for Einstein manifolds under bounded covering geometry
发布时间:2024-11-20 浏览次数:23
报告人:胥世成教授
报告时间:2024年11月23日(周六)上午10:00-11:00
腾讯会议:691757946,密码:123456
报告题目:Rigidity for Einstein manifolds under bounded covering geometry
报告人简介:胥世成,首都师范大学教授,博士生导师。主要研究领域为度量黎曼几何。在J. Diff. Geom., Adv. Math., Trans. Amer. Math. Soc.等国际高水平数学期刊上发表学术论文多篇。多次主持国家自然科学基金项目等。
报告摘要:We prove three rigidity results for Einstein manifolds with bounded covering geometry. (1) any almost flat manifold (M,g) must be flat if it is Einstein, i.e. Ric=λg for some real number λ. (2) A compact Einstein manifolds with a non-vanishing and almost maximal volume entropy is hyperbolic. (3) A compact Einstein manifold admitting a uniform local rewinding almost maximal volume is isometric to a space form. This is a joint work with Cuifang Si.