张腾博士学术报告:Numerical methods for the biharmonic nonlinear Schrödinger equation and their applications

发布时间:2025-11-06 浏览次数:10

报告题目:Numerical methods for the biharmonic nonlinear Schrödinger equation and their applications

报告人:张腾 助理教授 (广西大学)

报告时间:2025年11月7日19:00

报告地点:腾讯会议ID:133-934-907

报告摘要:The biharmonic nonlinear Schrödinger equation (BNLS) is a foundational model in nonlinear optics, as the biharmonic operator provides additional stability for soliton solutions, offering a refined description of light propagation in nonlinear media. The high dispersion term from the biharmonic operator imposes numerical burdens that require either large computational domain or high-accuracy method. In this talk, I will discuss several numerical methods for solving the BNLS and present the corresponding error estimates, including finite difference methods and time-splitting sine spectral method. Additionally, numerical examples illustrating the dispersion relation and simulations of soliton collisions will be provided.

报告人简介:张腾,广西大学助理教授,本科毕业于西安交通大学,博士毕业于新加坡国立大学,毕业后在北京计算科学研究中心做博士后,2023年入职广西大学。研究方向为高震荡色散方程的数值解法和应用,目前主持自然科学基金青C项目一项,在国际刊物Journal of Scientific Computing、Applied Numerical Mathematics等发表文章数篇。